Optimal Design of an Hourglass in-Fiber Air Fabry-Perot Microcavity—Towards Spectral Characteristics and Strain Sensing Technology
نویسندگان
چکیده
An hourglass in-fiber air microcavity Fabry-Perot interferometer is proposed in this paper, and its second reflecting surface of in-fiber microcavity is designed to be a concave reflector with the best curvature radius in order to improve the spectral characteristics. Experimental results proved that the extinction ratio of Fabry-Perot interferometer with cavity length of 60 μm and concave reflector radius of 60 μm is higher than for a rectangular Fabry-Perot interferometer with cavity length of 60 μm (14 dB: 11 dB). Theory and numerical simulation results show that the strain sensitivity of sensor can be improved by reducing the microcavity wall thickness and microcavity diameter, and when the in-fiber microcavity length is 40 μm, the microcavity wall thickness is 10 μm, the microcavity diameter is 20 μm, and the curvature radius of reflective surface II is 50 μm, the interference fringe contrast of is greater than 0.97, an Axial-pull sensitivity of 20.46 nm/N and resolution of 1 mN can be achieved in the range of 0-1 N axial tension. The results show that the performance of hourglass in-fiber microcavity interferometer is far superior to that of the traditional Fabry-Perot interferometer.
منابع مشابه
Design of Optical Fiber Fabry-Perot Sensors Based on Intensity and Phase with Parallel Processing
For fiber Fabry-Perot sensor vulnerable to external parameters such as electromagnetic, noise and displacement impact, reducing the problem resilience, research and design new fiber Fabry-Perot sensor with parallel processing capabilities based on the intensity and phase of perception. First, according to various types of external parameters and the degree of interference, established the inten...
متن کاملAn All Fiber Intrinsic Fabry-Perot Interferometer Based on an Air-Microcavity
In this work an Intrinsic Fabry-Perot Interferometer (IFPI) based on an air-microcavity is presented. Here the air microcavity, with silica walls, is formed at a segment of a hollow core photonic crystal fiber (HCPCF), which is fusion spliced with a single mode fiber (SMF). Moreover, the spectral response of the IFPI is experimentally characterized and some results are provided. Finally, the vi...
متن کاملA Hot-Polymer Fiber Fabry–Perot Interferometer Anemometer for Sensing Airflow
This work proposes the first hot-polymer fiber Fabry-Perot interferometer (HPFFPI) anemometer for sensing airflow. The proposed HPFFPI is based on a single-mode fiber (SMF) endface that is attached to a UV-cured polymer to form an ultracompact fiber Fabry-Perot microcavity. The proposed polymer microcavity was heated using a low-cost chip resistor with a controllable dc driving power to achieve...
متن کاملCrescent shaped Fabry-Perot fiber cavity for ultra-sensitive strain measurement
Optical Fabry-Perot interferometer sensors based on inner air-cavity is featured with compact size, good robustness and high strain sensitivity, especially when an ultra-thin air-cavity is adopted. The typical shape of Fabry-Perot inner air-cavity with reflection mode of operation is elliptic, with minor axis along with and major axis perpendicular to the fiber length. The first reflection surf...
متن کاملDesign, simulation and Fabrication of Circularly Polarized Fabry-Perot Antenna for Ku Band
This paper deals with the design and simulation of a RHCP Fabry-Perot antenna for 14.5 GHz. Based on transmission line model, partially Reflecting Surface (PRS) was designed so thatgain enhancement and circular polarization simultaneously obtained. PRS consist of a square loop and meander-line at the top and bottom respectively. In order to achieve the resonance condition in orthogonal componen...
متن کامل